
www.manaraa.com

Approximation Algorithms
for Data Management in Networks∗

Christof Krick
Heinz Nixdorf Institute and

Department of Mathematics
& Computer Science
Paderborn University

Germany

krueke@upb.de

Harald Räcke
Heinz Nixdorf Institute and

Department of Mathematics
& Computer Science
Paderborn University

Germany

harry@upb.de

Matthias Westermann
Heinz Nixdorf Institute and

Department of Mathematics
& Computer Science
Paderborn University

Germany

marsu@upb.de

ABSTRACT
This paper deals with static data management in computer
systems connected by networks. A basic functionality in these
systems is the interactive use of shared data objects that can
be accessed from each computer in the system. Examples for
these objects are files in distributed file systems, cache lines
in virtual shared memory systems, or pages in the WWW.
In the static scenario we are given read and write request
frequencies for each computer-object pair. The goal is to
calculate a placement of the objects to the memory modules,
possibly with redundancy, such that a given cost function is
minimized.

With the widespread use of commercial networks, as, e.g.,
the Internet, it is more and more important to consider
commercial factors within data management strategies. The
goal in previous work was to utilize the available resources,
especially the bandwidth, as good as possible. We will present
data management strategies for a model in which commercial
cost instead of the communication cost are minimized, i.e.,
we are given a metric communication cost function and a
storage cost function.

We introduce new deterministic algorithms for the static
data management problem on trees and arbitrary networks.
Our algorithms aim to minimize the total cost. To our
knowledge this is the first analytic treatment of this problem
that is NP-hard on arbitrary networks. Our main result is
a combinatorial algorithm that calculates a constant factor
approximation for arbitrary networks in polynomial time.
Further, we present an algorithm for trees that calculates an
optimal placement of all objects in X on a tree T = (V, E)
in time O(|X| · |V | · diam(T) · log(deg(T))).

1. INTRODUCTION
∗Partially supported by the DFG-Sonderforschungsbereich
376 and the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA 2001 Crete Island, Greece
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

In recent years, large computer systems connected by net-
works have become part of our everyday live. A good example
is the widespread use of the Internet and Internet-related
applications such as the World Wide Web (WWW). A ba-
sic functionality in these systems is the interactive use of
shared data objects that can be accessed from each com-
puter in the system. Examples for these objects are files in
distributed file systems for Ethernet-connected workstations,
cache lines in virtual shared memory systems for massively
parallel computers, or pages in the WWW.

The dramatic growth of computer systems necessitates
more and more an intelligent management of shared data
objects. With the widespread use of commercial networks, as,
e.g., the Internet, it is more and more important to consider
commercial factors within data management strategies. The
goal in previous work was to utilize the available resources,
especially the bandwidth, as good as possible. In such a
scenario it is usually assumed that the use of the resources
is for free. We will present data management strategies for a
model in which commercial cost instead of the communication
cost are minimized.

Our model mirrors, e.g., the perspective of a content
provider that offers information via pages in the WWW.
For that purpose, the content provider has to rent or buy
some amount of the resources bandwidth and memory. We
assume that there is a fee per transmitted byte for each com-
munication link and a fee per stored byte for each memory
module in the network. Then, the total cost of the content
provider is charged in dependency of the amount of bytes
that are sent along communication links or stored in memory
modules.

In this cost based model we will present static data man-
agement strategies. In the static scenario we are given read
and write request frequencies for each computer-object pair.
A data management strategy has to answer the following
questions.

• How many copies of a shared data object should be
created?

• On which memory modules should these copies be
placed?

• How should the read and write requests be served?

www.manaraa.com

The goal is to calculate a placement of the objects to the
memory modules, possibly with redundancy, such that the
total cost are minimized.

In general, the goal in previous work was to minimize the
total communication load (see, e.g., [1, 2, 4, 9]) which is
defined as follows: The communication load of a link is the
amount of data transmitted by this connection. The total
communication load is the sum over the load of all links
divided by the bandwidth of the respective link. Obviously,
a data management strategy, that is provably good in our
cost based model, minimizes also the total communication
load, if the fee of each link is equivalent to the reciprocal
value of the bandwidth of the respective link, and if the fee
of each memory module is 0. Thus, our cost based model is
a generalization of the total load model.

1.1 The cost based model
The computer system is modeled by an undirected graph
G = (V, E) with node set V and edge set E such that the
nodes represent the processors with their memory modules,
and the edges represent the links. The cost per stored data
object for the memory modules are described by a function
cs : V 7−→ R+

0 and the cost per transmitted data object for
the links are described by a function ct : E 7−→ R+

0 . For
simplicity, we assume that all the data objects have uniform
size. Thus, the functions cs and ct do not depend on the data
objects. However, all our results hold also in a non-uniform
model.

Let ct(v, v′) denote the cost per transmitted data ob-
ject from a node v to a node v′. We define ct(v, v′) :=

minpath p from v to v′

nP
edge e lies on p ct(e)

o
. Then, the func-

tion ct defines a metric space over the node set V , since ct is
non-negative, symmetric, and satisfies the triangle inequality.
Thus, ct can also be seen as a distance function. To keep
our algorithms and proofs simple and clear we often use this
view of ct.

The static data management problem is defined as follows
(compare [10]). We are given a set X of shared data objects
and the read and write request frequencies for each node-
object pair which are described by the functions fr : V ×
X 7−→ N and fw : V × X 7−→ N, respectively. For each
object x ∈ X, we have to determine a set of nodes holding
copies of x. Then, it remains to specify how each request r
for x will be served. The node issuing r is denoted the home
h(r) of the request r.

• In case of a read request r, h(r) simply reads the nearest
copy of x. The node holding this copy is denoted the
node s(r) that serves the request r. Note that for a
given set of nodes holding copies of x a read request is
always served with optimal cost.

• In case of a write request r, an update is sent from h(r)
to all copies of x. Thus, we have to determine the edges
along which this update is sent. This is modeled by
a multi-set of edges EUr which is denoted the update
set of request r. Note that some edges in this multi-set
can induce a multi-cast tree that branches at arbitrary
nodes and that some edges can appear several times in
this multi-set. For technical reasons, the node holding
the copy of x that is nearest to h(r) is denoted the
node s(r) that serves the request r.

The goal in the cost based model is to calculate a placement
of the objects to the memory modules such that the total
cost are minimized. The total cost are defined as follows.

• A copy of object x on the node v increases the total
cost by cs(v).

• A read request r for object x increases the total cost
by ct(h(r), s(r)).

• A write request r for object x increases the total cost
by

P
e∈EUr

EUr (e) · ct(e), where EUr (e) denotes the

number of appearances of edge e in the multi-set EUr .

The model described above is slightly restrictive in the
sense that it fixes the update policy to a certain range. In
particular, it does not include strategies that allow only
a fraction of the copies to be updated in case of a write,
which, e.g., is implemented in strategies using the majority
trick introduced in [14]. However, all strategies using such
techniques add time stamps to the copies. This requires that
there is some definition of uniform time among different nodes.
Since it is not clear how to realize this in an asynchronous
setting, we restrict ourselves to strategies that update or
invalidate all copies in case of a write.

1.2 Previous and related work
The first approaches to solve static data management prob-
lems concentrate on modeling it by mixed integer programs
and solving these programs efficiently by using heuristics.
Here several models with different cost functions and con-
straints have been developed. The survey paper by Dowdy
and Foster [7] gives an overview of this work.

Recently and independently, Baev and Rajaraman [3] con-
sider static data management in arbitrary networks with
memory capacity constraints in a model that is similar to
our model. The major difference is that they only consider
read requests. They present a constant factor approximation
algorithm that aims to minimize the total cost. This algo-
rithm is based on solving a linear programming relaxation
of the problem and rounding the obtained solution.

Milo and Wolfson [15] show that the static data manage-
ment problem in arbitrary networks is already NP-hard in
the total communication load model. Further, they present
polynomial time algorithms for completely-connected net-
works, trees, and rings that calculate optimal placements in
the total communication load model.

Maggs et. al. [10] present static and dynamic data manage-
ment strategies for trees, meshes, and Internet-like clustered
networks. All these strategies aim to minimize the conges-
tion, i.e., the maximum over the load of all edges divided by
the bandwidth of the respective edge.

They present a deterministic strategy for static data man-
agement on trees that minimizes the communication load
on all edges simultaneously. Obviously, this yields minimum
congestion as well as minimum total communication load.
Further, they present optimal or close-to-optimal strate-
gies that aim to minimize the congestion on meshes and
Internet-like clustered networks. For example, the strategy
for d-dimensional meshes with n nodes achieves optimal con-
gestion up to a factor of O(d · log n). The sequential running
time of these algorithms is linear in the input size. Moreover,
they show that the static problem is already NP-hard on a
3× 3 mesh in the congestion model.

www.manaraa.com

In the dynamic setting, no knowledge about the request
pattern is assumed. An adversary specifies requests at run-
time. Here, they present optimal or close-to-optimal strate-
gies that also aim to minimize the congestion on trees, meshes,
and Internet-like clustered networks. These strategies are
investigated in a competitive model. Meyer auf der Heide
et. al. [11, 12] extend these results in the dynamic setting to
non-uniform cost models with different communication costs
for accessing and migrating data objects, to networks with
memory capacity constraints, and other classes of networks.

Awerbuch et. al. [1, 2] consider the dynamic data man-
agement problem in arbitrary networks. In [1], they present
a centralized strategy that achieves an optimal competitive
ratio O(log n) and a distributed strategy that achieves com-
petitive ratio O((log n)4) on an arbitrary network with n
nodes. In [2], the distributed strategy is adapted to networks
with memory capacity constraints. All competitive ratios
are with respect to the total communication load.

The static data management problem in our cost based
model is similar to the facility location problem. The ma-
jor difference is that in the facility location problem there
exists nothing comparable to the write requests in the data
management problem. Aardal et. al. [13] gave the first con-
stant factor approximation algorithm for the facility location
problem. This was subsequently improved by Chudak and
Shmoys [5, 6] who achieved the currently best known ap-
proximation ratio of 1 + 2/e ≈ 1.736. All these algorithms
are based on solving linear programming relaxations of the
facility location problem and rounding the obtained solutions.
Korupolu et. al. [8] analyzed a well known local search heuris-
tic and showed that it achieves an approximation factor of
5 + ε with ε > 0.

1.3 New results
We introduce new deterministic algorithms for the static data
management problem on trees and arbitrary networks. Our
algorithms aim to minimize the total cost in our cost based
model. To our knowledge this is the first analytic treatment
of this problem. Our main result, presented in Section 2,
is a combinatorial algorithm that calculates a constant fac-
tor approximation for arbitrary graphs in polynomial time.
Further, we present in Section 3 an algorithm for trees that
calculates an optimal placement of all objects in X on a
tree T = (V, E) in time O(|X| · |V | · diam(T) · log(deg(T))),
where diam(T) denotes the unweighted diameter of T , i.e.,
the maximum number of edges on a path connecting two
arbitrary nodes in T , and deg(T) denotes its maximum node
degree.

2. THE APPROXIMATION ALGORITHM
FOR ARBITRARY NETWORKS

In this section, we present a combinatorial algorithm that
calculates a constant factor approximation for the static data
management problem on arbitrary graphs. Our algorithm
places all objects independently from each other. Thus, fix
an object x.

The focus in our algorithm lies on the calculation of a
good placement for object x. Given such a placement write
accesses are handled as follows. A node that issues a write
request r for x first sends a message to the closest node
holding a copy, i.e., s(r). Then an update of all copies of
x via a minimum spanning tree is initiated, i.e., s(r) sends

out one message that is transmitted along the branches of
a minimum spanning tree that connects all nodes holding
copies of x. Thus, the update set EUr contains all edges on
the shortest path between h(r) and s(r) and all edges of the
minimum spanning tree. Note that edges on the path from
h(r) and s(r) can be contained twice in the multi-set EUr .

In order to show the quality of our solution we will compare
it to an optimal solution that fulfills the following additional
constraints.

1. A write request r for x first sends a message to s(r)
and then initiates the update of all copies of x via a
multi-cast tree. All write requests for x use the same
multi-cast tree Tx.

2. Each copy of x serves at least W requests, with W =P
v∈V fw(v) denoting the total number of write re-

quests for x.

A placement fulfilling these constraints is called restricted.
The following lemma ensures that there exists a restricted
placement that has nearly optimal cost for reading, storing
and updating global objects.

Lemma 1. Let OPT and OPTW denote an optimal and
optimal restricted placement, respectively. Then

COPTW ≤ 4COPT ,

where COPTW and COPT denote the total cost of OPTW and
OPT, respectively.

Proof. Suppose the optimum placement OPT is given
together with the optimal update sets of all requests. We
will successively transform this placement into a restricted
placement as follows. First, we replace each update set EOPT

Ur

of the optimum placement by the edge set of a minimum
spanning tree (MST) connecting all copies plus the edges
on the path from h(r) to s(r). The following claim shows
that the total cost of the placement is only doubled by this
transformation.

Claim 2. Let OPT′ denote the new placement and EOPT′
Ur

its update set for request r. ThenX
e∈EOPT′

Ur

EOPT′
Ur

(e) · ct(e) ≤ 2
X

e∈EOPT
Ur

EOPT
Ur

(e) · ct(e) .

Proof. Let EST and EMST denote the edge set of a mini-
mum Steiner tree and a minimum spanning tree, respectively,
connecting h(r) with all nodes holding a copy of x. ThenP

e∈EMST
ct(e) ≤ 2

P
e∈EST

ct(e) −
P

e∈EP
ct(e), where EP

denotes the edge set containing all edges of an arbitrary path
P of the Steiner tree. By choosing the path from h(r) to s(r)
for P we getX
e∈EOPT′

Ur

EOPT′
Ur

(e) · ct(e) ≤
X

e∈EMST

ct(e) +
X

e∈EP

ct(e)

≤ 2
X

e∈EST

ct(e) = 2
X

e∈EOPT
Ur

EOPT
Ur

(e) · ct(e) ,

which yields the claim.

In a second step the placement OPT′ is transformed into
a restricted placement OPTW as follows.

www.manaraa.com

As long as the set C≤W of copies that do not
serve at least W requests is not empty, delete
the copy c ∈ C≤W with maximum tree distance
from the root node of the MST, which is rooted
at an arbitrary node. (The tree distance between
a node u and v is the length of the unique path
that connects u and v via edges of the MST.)
After the deletion of c, each request previously
assigned to c is reassigned to its nearest remaining
copy in the network.

This algorithm terminates because the number of requests
is larger than W and thus the last copy will not be deleted.
Obviously, the resulting placement is restricted because each
remaining copy serves at least W requests. It remains to show
that the additional cost that incur by reassigning requests
to other copies is small.

Each request that is reassigned from a copy on node
v to another copy on node v′ increases the total cost by
ct(h(r), v′) − ct(h(r), v). Note that this holds for write re-
quests as well, because the algorithm has to maintain the
first constraint of a restricted placement, i.e., the cost for a
message from h(r) to v has to be taken into account.

Let vf denote the father node of v according to the tree
structure given by the MST. Each re-assignment increases
the cost by

ct(h(r), v′)− ct(h(r), v) ≤ ct(h(r), vf)− ct(h(r), v)

≤ ct(v, vf) .

The first step holds since ct(h(r), v′) ≤ ct(h(r), vf). v′ holds
the copy closest to h(r), but vf still holds a copy, because
copies closer to the root node are deleted later. The second
step holds because of the triangle inequality.

At most W requests are reassigned in a deletion step
because otherwise the copy would not have to be deleted
since it would have served more than W requests. The total
cost-increment caused by a deletion on node v is therefore
at most W · ct(v, vf). Summing this over all nodes holding
a copy yields that the total cost-increment does not exceed
the cost expended by OPT′ for updating objects. Together
with Claim 2 this yields the lemma.

In the remainder of this section we only consider restricted
placements. We split the total cost of such a placement
into read, update, and storage cost which are defined as
follows. For a given placement P , the storage cost CP

s

are defined as CP
s :=

P
v∈V holding a copy cs(v), the update

cost CP
u are defined as CP

u := W ·
P

e∈ETx
ct(e), with ETx

denoting the edge set of the multi-cast tree connecting
all copies of x and W =

P
v∈V fw(v) denoting the total

number of write requests for x, the read cost CP
r are de-

fined as CP
r =

P
request r for x ct(h(r), s(r)). Furthermore,

CP
r (S) :=

P
r∈S ct(h(r), s(r)) denotes the read cost for a set

S of requests.
Note that these definitions are only useful for restricted

placements because the cost for a write request r (represented
by the multi-set EUr) are partitioned into the cost for a multi-
cast tree ETx and the cost for the path from h(r) to s(r). The
latter cost are defined to belong to the read cost. By defining
the read cost this way, we do not differentiate between read
and write requests any more. The write requests are only
represented by their total number W . Their exact location
in the network does not influence the update cost. Obviously,

for the total cost CP of a restricted placement P holds
CP = CP

r + CP
u + CP

s .

2.1 Proper placements
In this section, we define proper placements and prove some
helpful properties of such proper placements. First, we
introduce some notations and definitions. For a node v,
let Rz

v denote the set of those z distinct requests that are
closest to v. Further, let d(v, z) denote the average distance
between v and the requests in Rz

v, i.e., d(v, z) := 1
|Rz

v|
·P

r∈Rz
v

ct(h(r), v).

For each node v, we define the write radius rw(v) :=
d(v, W), where W denotes the total number of write requests
for x. Furthermore, we choose the storage radius rs(v) ∈ R+

0

and the storage number zs(v) ∈ N0 such that

(zs(v)− 1) · rs(v) ≤ cs(v) < zs(v) · rs(v) and

d(v, zs(v)− 1) ≤ rs(v) < d(v, zs(v)) .

This is done as follows. Obviously zs(v) can be cho-
sen such that (zs(v) − 1) · d(v, zs(v) − 1) ≤ cs(v) <
zs(v) · d(v, zs(v)). Then rs(v) is chosen from the inter-
val [d(v, zs(v)− 1), d(v, zs(v)) such that the first inequalities
hold. The idea behind these definitions is that the write
radius and the storage radius of a node v give an indication
of the optimal distance from v to the nearest copy in the
network.

This is formalized in the following. We call a placement
proper if the copies are distributed according to the write
and storage radii of the nodes as follows.

1. Every node v has a copy in distance at most k1 ·
max{rw(v), rs(v)}, where k1 denotes a suitable con-
stant.

2. Two nodes u and v both holding a copy have at least
distance 2k2 ·max{rw(u), rw(v)}, where k2 denotes a
suitable constant.

In the remaining part of this section we will show that
any proper placement guarantees a constant approximation
factor for the read and update cost. In Section 2.2 we will
present an algorithm that calculates a proper placement with
low storage cost.

Theorem 3. For the read and update cost of a proper
placement PRO holds

CPRO
r ≤ (k1 + 1) · (COPTW

r + COPTW
s) and

CPRO
u ≤ 2

„
k2

k2 − 1
· (CPRO

r + COPTW
r) + COPTW

u

«
,

where OPTW denotes an optimal restricted placement.

Proof. First, the following lemma relates the read cost
of a proper placement PRO to the read cost and storage cost
of a optimal restricted placement OPTW .

Lemma 4. For the read cost CPRO
r of a proper placement

holds CPRO
r ≤ (k1 + 1) · (COPTW

r + COPTW
s).

Proof. In order to show the lemma we compare the
proper placement and the optimal restricted placement

www.manaraa.com

OPTW . Suppose a copy is placed on node v in the opti-
mal restricted placement OPTW . Let Sv denote the set
of requests served by this copy in OPTW . We show that
CPRO

r (Sv) ≤ (k1 + 1) · (COPTW
r (Sv) + cs(v)). Then the

lemma follows immediately by summing over all request sets.
Let r ∈ Sv denote a request issued at node h(r) and served

at node s(r) in the proper placement. The distance between
h(r) and s(r) can be estimated by

ct(h(r), s(r)) ≤ ct(h(r), v′)

≤ ct(h(r), v) + ct(v, v′) ,

where v′ denotes the node holding the copy nearest to v in
the proper placement PRO. The first step uses the fact that
s(r) is the closest copy to h(r) and the second step holds
due to the triangle inequality.

Then the read cost CPRO
r (Sv) of the proper placement

PRO can be bounded by

CPRO
r (Sv) =

X
r∈Sv

ct(h(r), s(r))

≤
X

r∈Sv

ct(h(r), v) +
X

r∈Sv

ct(v, v′)

≤ COPTW
r (Sv) + |Sv| · ct(v, v′)

≤ COPTW
r (Sv) + |Sv| · k1 ·max{rs(v), rw(v)} .

Recall that ct(v, v′) ≤ k1 ·max{rs(v), rw(v)} due to the first
property of a proper placement. Now, we distinguish two
cases according to the maximum of {rs(v), rw(v)}.

• Suppose rw(v) = max{rs(v), rw(v)}.

Obviously, COPTW
r (Sv) ≥ |Sv| · rw(v), since the copy

on node v serves |Sv| ≥ W requests in the optimal
restricted placement OPTW . Then

CPRO
r (Sv) ≤ COPTW

r (Sv)

+ |Sv| · k1 ·max{rs(v), rw(v)}

≤ COPTW
r (Sv) + k1 · |Sv| · rw(v)

≤ (k1 + 1) · COPTW
r (Sv) .

• Suppose rs(v) = max{rs(v), rw(v)}.

In this case we distinguish two sub-cases according to
the cardinality of Sv.

– Suppose |Sv| < zs(v). Then

CPRO
r (Sv) ≤ COPTW

r (Sv)

+ |Sv| · k1 ·max{rs(v), rw(v)}

≤ COPTW
r (Sv)

+ (zs(v)− 1) · k1 · rs(v)

≤ COPTW
r (Sv) + k1 · cs(v) .

Recall that (zs(v)− 1) · rs(v) ≤ cs(v) by the defi-
nition of zs(v) and rs(v).

– Suppose |Sv| ≥ zs(v). Then

COPTW
r (Sv) ≥ |Sv| · d(v, |Sv|)

≥ |Sv| · d(v, zs(v))

≥ |Sv| · rs(v) .

Thus, for the read cost of the proper placement
PRO holds

CPRO
r (Sv) ≤ COPTW

r (Sv)

+ |Sv| · k1 ·max{rs(v), rw(v)}

≤ COPTW
r (Sv) + |Sv| · k1 · rs(v)

≤ (k1 + 1) · COPTW
r (Sv) .

Altogether this yields the lemma.

Finally, the following lemma relates the write cost of a
proper placement PRO to the cost of an optimal restricted
placement OPTW .

Lemma 5. For the update cost of a proper placement PRO
holds CPRO

u ≤ 2(k2
k2−1

· (CPRO
r + COPTW

r) + COPTW
u).

Proof. First, we prove the following claim showing that
every copy in the proper placement PRO serves a certain
number of requests.

Claim 6. Every copy in a proper placement serves at least
(1− 1

k2
) ·W requests.

Proof. In the proper placement PRO each request r with
ct(h(r), v) ≤ k2 · rw(v) is served by the copy on v due to
the second property of a proper placement. Now, the claim
follows from a simple averaging argument.

Assume for contradiction that a copy on node v serves less
than (1− 1

k2
)·W requests. Then at least W−(1− 1

k2
)·W = W

k2

requests in RW
v have a distance to v larger than k2 · rw(v).

This yields

rw(v) =
1

|RW
v | ·

X
r∈RW

v

ct(h(r), v) >
1

W
·W
k2
·k2·rw(v) = rw(v) ,

which is a contradiction.

Suppose that a node v holds a copy in the proper placement
PRO and that the copy nearest to v in the optimum restricted
placement OPTW is placed on v′. For a request r that is
served by v in the proper placement, let s(r) denote the node
serving r in OPTW . Then

ct(v, v′) ≤ ct(v, s(r)) ≤ ct(v, h(r)) + ct(h(r), s(r)) .

Let Sv denote the set of requests served by v in the proper
placement. Summing the above inequality over all requests
in Sv yields

|Sv| · ct(v, v′) =
X

r∈Sv

ct(v, v′)

≤
X

r∈Sv

ct(v, h(r)) +
X

r∈Sv

ct(h(r), s(r))

= CPRO
r (Sv) + COPTW

r (Sv) .

Now, we compare the update cost of the proper placement
PRO and the optimal restricted placement OPTW . The

www.manaraa.com

additional cost in PRO caused by the update messages for
the copy on v are less than

W · ct(v, v′) ≤ k2

k2 − 1
· |Sv| · ct(v, v′)

≤ k2

k2 − 1
· (CPRO

r (Sv) + COPTW
r (Sv)) .

Recall for the first step that |Sv| ≥ (1 − 1
k2

) · W due to
Claim 6.

Summing this inequality over all nodes holding a copy
in the proper placement and taking the cost for updating
all copies of the optimal restricted placement into account
yields that there exists a Steiner tree for updating all copies
of PRO with cost at most k2

k2−1
· (CPRO

r +COPTW
r)+COPTW

u .

Thus, CPRO
u ≤ 2(k2

k2−1
· (CPRO

r + COPTW
r) + COPTW

u), since
we use a minimum spanning tree for updating.

Lemmas 4 and 5 yield the theorem.

2.2 The approximation algorithm
In this section, we present the algorithm that computes
a proper placement with low storage cost. The algorithm
consists of the following three phases.

1. An initial placement is calculated by an approximation
algorithm for the facility location problem. The input
is the related facility location problem, i.e., the same
input as for our data management problem with the
difference that all write requests become read requests.
Hence, in this phase the update cost are neglected.

2. Additional copies are added to the initial placement.
As long as there exists a node v whose nearest copy
has a distance to v larger than 5rs(v), a new copy is
stored on v.

3. Copies that violate the second property of a proper
placement are deleted in the following way. All nodes
holding a copy are scanned in ascending order according
to their write radii rw(v). For a current node v holding
a copy, a copy on node u is deleted if ct(u, v) ≤ 4rw(u).

Theorem 7. The placement calculated by the above algo-
rithm achieves a constant approximation factor for the static
data management problem.

Proof. In order to prove the theorem, we first show that
the algorithm computes a proper placement. Then we show
that the storage cost of this placement are optimal up to a
constant factor.

Lemma 8. The above algorithm calculates a placement
fulfilling the following properties.

• Every node v has a copy in distance at most 29 ·
max{rw(v), rs(v)} from v. This is the first property
of a proper placement with k1 = 29.

• Two nodes u and v both holding a copy have at least dis-
tance 4 max{rw(u), rw(v)}. This is the second property
of a proper placement with k2 = 2.

Proof. First, we show that the second property holds.
Let u and v denote two nodes both holding a copy. Assume
for contradiction that ct(v, u) ≤ 4rw(u). Obviously, the
copy on v would have been deleted in the third phase of the
algorithm.

In order to show the first property, we make the following
observation. If a node v holds a copy after the second phase
of the algorithm, there exists a node holding a copy in the
final placement with distance at most 4rw(v) to v. Assume
that the copy on node v is deleted in phase 3 during the
scan of node u that holds a copy. Thus ct(v, u) ≤ 4rw(v).
Assume that the copy on node u is deleted later in phase 3
during the scan of some node v′ that holds a copy. Hence,
ct(u, v′) ≤ 4rw(u) ≤ 4rw(v′). The last inequality holds since
the nodes are considered in ascending order according to
their write radii. But in this case the copy on node v′ would
have been already deleted during the scan of node u, since
ct(u, v′) ≤ 4rw(v′). This is a contradiction.

Now, we bound the distance from a node u to its closest
copy in the network. Let v and v′ denote the nodes holding
the closest copy after the second and third phase of the
algorithm, respectively. Then

ct(u, v′) ≤ ct(u, v) + ct(v, v′) ≤ 5rs(u) + 4rw(v) ,

because of the above observation and the triangle inequality.
To get the desired result we have to relate rw(v) to rw(u).

Obviously, rw(v) ≤ ct(v, u) + rw(u), since rw(v) denotes the
average distance between v and the set of those W distinct
requests that are closest to v. Thus,

ct(u, v′) ≤ 5rs(u) + 4rw(v) ≤ 25rs(u) + 4rw(u) .

Thus choosing k1 = 29 and k2 = 2 we get a proper place-
ment.

It remains to prove that the storage cost of the placement
calculated by the algorithm are low.

Lemma 9. The storage cost of the placement calculated by
the above algorithm are bounded by f · (COPTW

s + COPTW
r),

where f denotes the approximation ratio of the facility loca-
tion algorithm used in the first phase.

Proof. Let Ci
s and Ci

r denote the storage cost and read
cost of the placement after the ith phase of the algorithm,
respectively. Further, let CFLP

s and CFLP
r denote the opti-

mum storage cost and read cost, respectively, of the related
facility location problem. Then

C3
s ≤ C2

s + C2
r

≤ C1
s + C1

r

≤ f · (CFLP
s + CFLP

r)

≤ f · (COPTW
s + COPTW

r) .

The first inequality holds, since during the third phase copies
are only deleted and thus the storage cost decreases. The
second inequality will be shown in Claim 10. The last two
inequalities are obvious.

Claim 10. The sum of storage and read cost does not
increase during the second phase of the algorithm, i.e., C2

s +
C2

r ≤ C1
s + C1

r .

www.manaraa.com

Proof. In order to show the claim we need the following
observation.

Observation 11. In distance at most 2rs(v) from a node

v, there are at least zs(v)
2

requests.

Proof. We call a request r with ct(h(r), v) ≤ 2rs(v) close

to v. Assume for contradiction that there are less than zs(v)
2

close requests. In this case at most d zs(v)
2

− 1e requests are

close to v. Therefore at least (zs(v)−1)−d zs(v)
2

−1e = b zs(v)
2

c
requests from the set Rzs(v)−1

v are not close. Recall that

|Rzs(v)−1
v | = zs(v)− 1. Thus

d(v, zs(v)− 1) <
1

zs(v)− 1
·

„—
zs(v)

2

�
· 2rs(v)

«
≤ d(v, zs(v)− 1) .

This is a contradiction.

We will show that the cost always decreases whenever a
copy is placed on a node v during the second phase. Before
the new copy is added every copy has distance larger than

5rs(v) from v. Therefore the zs(v)
2

requests that are close to
v have distance larger than 3rs(v) to the nearest copy. This
causes read cost of at least‰

zs(v)

2

ı
· 3rs(v) ≥

‰
zs(v)

2

ı
rs(v) + cs(v) .

The inequality follows directly from the choice of rs(v). When
a copy has been placed on v the cost is‰

zs(v)

2

ı
· d

„
v,

‰
zs(v)

2

ı«
+ cs(v) ≤

‰
zs(v)

2

ı
rs(v) + cs(v) .

Hence, the read and storage cost do not increase when a
copy is added during the second phase of the algorithm.

This completes the proof of the lemma.

Thus, the theorem follows from Theorem 3 and Lemmas 8
and 9.

3. THE OPTIMAL ALGORITHM
FOR TREES

In this section, we present an algorithm that calculates an
optimal placement for the static data management problem
on a rooted tree T = (V, E). Our algorithm places all objects
independently from each other. Thus, fix an object x. This
section is organized as follows. First, we present for the
read-only case, i.e., fw(v, x) = 0 for all v ∈ V , an algorithm
that computes an optimal placement for binary trees. By
simulation, this algorithm can be used to compute an optimal
placement for arbitrary trees. Finally, we show how to adapt
this algorithm for the general case, i.e., for arbitrary read
and write frequencies.

3.1 The read-only case
Let diam(T) denote the unweighted diameter of T , i.e., the
maximum number of edges on a path connecting two arbi-
trary nodes in T , and let deg(T) denote its maximum node
degree. For a node v, let Tv denote the subtree rooted at
v, i.e., the connected component containing v if the edge

incident to v and its father is removed. Then let |Tv| denote
the number of nodes in Tv.

A placement P on a subtree Tv consists of a set C of nodes
holding copies, a set Rass

P of requests assigned to copies
in Tv and a set Rout

P of outgoing requests, i.e., requests
that are not assigned to any copy in Tv. The cost of a
placement P on a subtree Tv are defined as cost(P) :=P

v∈C cs(v) +
P

r∈Rass
P

ct(h(r), s(r)) +
P

r∈Rout
P

ct(h(r), v).

The copy distance dP of a placement P is defined to be
the distance from node v to the closest copy in Tv. Further,
we call a placement P of a subtree Tv naturally assigned if
it fulfills the following conditions.

• If a request r is assigned to a copy in Tv then this is
the closest copy to h(r).

• All requests that pass a node are either assigned to the
same copy in Tv or belong all to the set of outgoing
requests.

Obviously, there always exists an optimal placement on Tv

that is naturally assigned.
Our tree algorithm is based on the key observation that

the optimal placement on a subtree Tv does not too heavily
depend on the placement decisions made on T \ Tv. In
fact it only depends on a few parameters. Thus, only a
restricted number of placements on Tv have to be considered
for calculating the optimal placement for T . This observation
can be formalized as follows. We call a set STv of placements
on Tv sufficient if in each naturally assigned placement on T
the placement on Tv can be replaced by a placement from STv

without increasing the total cost. Hence, only the placements
in STv have to be considered by an algorithm that searches
for an optimal placement for T .

Lemma 12. For any subtree Tv exists a sufficient set STv

with |STv | ≤ 2|Tv|+ 1.

Proof. First, we define the set STv as follows. For
any D ∈ R+

0 , the set STv contains a placement ED
v :=

arg minplacement P {cost(P) + |Rout
P | · D} which is denoted

the optimal export placement for distance D. Furthermore,
for any R ∈ N, the set STv contains a placement IR

v :=
arg minplacement P {cost(P) + dP · R} which is denoted the
optimal import placement for request-quantity R.

Now, we will prove that STv is sufficient. Finally, we will
show that it contains at most 2 · |Tv|+1 placements. Suppose
that we are given a naturally assigned placement P for T . Let
PTv and PT\Tv denote the corresponding sub-placements on
Tv and T \Tv, respectively. We have to replace the placement
PTv by one of the placements from STv without increasing
the cost. We distinguish the following two cases: requests
issued in T \ Tv are served in Tv and requests issued in Tv

are served in T \ Tv. Note that no other case can occur in a
naturally assigned placement.

• Suppose that R requests issued in T \ Tv are served in
Tv. The total cost of the placement is cost(PT\Tv) +

cost(PTv) + dPTv
· R. Replacing PTv with IR

v yields

total cost cost(PT\Tv)+ cost(IR
v)+dID

v
·R which is not

larger by the definition of IR
v .

• Suppose that requests issued in Tv are served in T \ Tv

by a copy that has distance D from v. The total cost

www.manaraa.com

of this placement is cost(PT\Tv) + cost(PTv) + |Rout
PTv

| ·
D. Similar to case 1, we do not increase the cost by
replacing PTv with ED

v .

Finally, we prove that |STv | ≤ 2|Tv|+ 1. First of all, |Tv|
placements suffice in order to contain a placement IR

v =
arg minplacement P {cost(P) + dP · R}, for any R ∈ N, since
the distance dP from v to its nearest copy in Tv can only
take |Tv| distinct values, and for every value of dP there is
one optimal placement.

To prove that |Tv|+ 1 placements in STv suffice in order
to contain a placement ED

v = arg minplacement P {cost(P) +
|Rout

P | ·D}, for any D ∈ R+
0 , we argue that |Rout

P | can only
take |Tv| + 1 distinct values for placements that minimize
cost(P) + |Rout

P | ·D.
For distances D1 and D2 with D1 < D2, define the place-

ments P1 and P2 with Pi := arg minplacement P {cost(P) +
|RP | · Di}, for each i ∈ {1, 2}. For these placements hold
that the requests of a node are either all assigned to the
same copy or belong all to the set of outgoing requests. This
follows from the fact that P1 and P2 are naturally assigned.
|Rout

P | takes only |Tv| + 1 different values because if the
requests of a node u are assigned to a copy in P1, then
these requests are assigned to a copy in P2, as well. This
will be shown in the following. Assume for contradiction
that the requests of node u are assigned to a copy in P1

and belong to the set of outgoing requests in P2. We call
a subtree Tw ⊆ Tv self-contained if no request issued in
Tw is assigned to a copy in Tv \ Tw or belongs to the set
of outgoing requests, and if no request issued in Tv \ Tw

is assigned to a copy in Tw. Obviously there exists a self-
contained subtree Tw that contains u in the placement P1. In
placement P2 the sub-placement of Tw has changed such that
the requests from u belong to the set of outgoing requests.
By exchanging the different sub-placements on Tw between
P1 and P2 either the placement P1 or P2 would improve.
This is a contradiction.

Now, we give a short sketch of the algorithm that computes
an optimal placement for T . Let vr denote the root node of
T , i.e., T = Tvr . The algorithm recursively computes the so
called relevant parameters of the placements belonging to the
sufficient set STvr

. The relevant parameters of a placement
Pv on Tv are parameters that are used for computing the total
cost of a placement on Tw ⊃ Tv that uses Pv as placement on
the subtree Tv. For the case that Pv is an import placement
these parameters are the cost of Pv, its copy distance, and
the node vi holding the closest copy to v in Tv. If Pv is an
export placement the relevant parameters are the cost of
Pv, its number of outgoing requests, and an interval IPv ,
indicating the distances D ∈ IPv for which Pv is an optimal
export placement. When the relevant parameters of the
placements in STvr

have been computed the cost of E∞
v is

the cost of an optimal placement on T .

Theorem 13. The optimal placement on an arbitrary tree
T can be computed in time O(|T | · diam(T) · log(deg(T))).

Proof. The following lemma gives an upper bound on
the time needed to compute the relevant parameters of all
placements in the sufficient set of a node, if the parameters
of the placements, in the sufficient sets of the children of this
node are given.

Lemma 14. For a binary subtree Tv of T the relevant
parameters of all placements in the sufficient set STv can be
computed in time O(|Tv|) if the parameters of the placements
belonging to the sufficient sets of v’s children are given.

Proof. During the algorithm the set STv is coded by a
sequence of at most |Tv| import tuples and a sequence of at
most |Tv|+ 1 export tuples that describe the corresponding
import and export placements of STv . An import tuple
(CP , dP , vi) consists of the cost CP of the corresponding
placement P , the node vi holding the closest copy to v in Tv

and the copy distance dP := ct(v, vi) of P . An export tuple
(CP , |RP |, IP) consists of the cost CP of the corresponding
placement P , the number of outgoing requests |RP | of P
and an optimality interval IP . For D ∈ IP , the placement
P is the optimal export placement ED

v .
During the algorithm the sequences of import tuples are

sorted due to their copy distances and the sequences of export
tuples are sorted due to their optimality intervals. Now, we
explain how to construct these sequences for a subtree Tv.

If v is a leaf the construction works as follows. For an
import placement the subtree Tv must contain a copy. Thus
a copy has to be stored on v. This yields cost cs(v) and copy
distance 0. For the construction of the export placements
we distinguish two cases according to the distance D to a
copy within T \ Tv.

• If D < cs(v)
fr(v)

then the optimal export placement ED
v

has no copy on v. The corresponding export tuple is

(0, fr(v), [0, . . . , cs(v)
fr(v)

)).

• If D ≥ cs(v)
fr(v)

then a copy is placed on v in ED
v . The

export tuple is (cs(v), 0, [cs(v)
fr(v)

, . . . ,∞)).

Now, suppose that v is an inner node of T and has two
children v1 and v2, connected via edges e1 = (v1, v) and
e2 = (v2, v), respectively. First we construct the tuples for
the optimal import placements of STv .

Claim 15. The sorted sequence of import tuples of Tv can
be computed in time O(|Tv|) if the sorted sequences of import
and export tuples of Tv1 and Tv2 are given.

Proof. In the proof of Lemma 12 was shown that for
each node vi ∈ Tv there exists at most one optimal import
placement in which vi holds the closest copy to v in Tv. In
the following we will denote this placement with Ivi

v . This
notation will coexist with the notation IR

v for the optimal
import placement with request-quantity R in the following.
Note that each Ivi

v = IR
v for R in a certain, possibly empty in-

terval. We will construct an import tuple for every placement
Ivi

v .
The first tuple that has to be computed corresponds to

a placement storing a copy on node v, i.e., vi = v. This
placement is optimal if a large number of requests from T \Tv

are served within Tv, i.e., it equals I∞v . The copy distance of
this tuple is 0. Furthermore, no requests enter the subtrees
Tv1 and Tv2 . Thus, the cost of the tuple can be obtained by

combining the tuple (C1, |R1|, I1) of E
ct(e1)
v1 and the tuple

(C2, |R2|, I2) of E
ct(e2)
v2 . It is given by cs(v) + C1 + ct(e1) ·

|R1|+ C2 + ct(e2) · |R2|.

www.manaraa.com

Now assume w.l.o.g. that vi ∈ Tv1 . Obviously, there exists
an optimal placement in which no requests enter Tv2 from
T \ Tv2 , because the copy on node vi ∈ Tv2 is at least as
close as any copy in Tv2 . Thus, we can construct the optimal
import placement Ivi

v by combining the placements Ivi
v1 for

Tv1 and E
ct(vi,v2)
v2 for Tv2 . The only problem is that all tuples

corresponding to some Ivi
v , vi ∈ Tv1 , have to be computed in

time O(|Tv|). In order to do this we exploit that the tuples of
Ivi

v1 and ED
v2 are sorted. We traverse the sequence of import

tuples in order of increasing copy distance and search for
the required export tuple in the sequence of Tv2 . Since the
tuples in this sequence are sorted in order of their optimality
intervals, we can use linear search and start each search at
the position the previous search stopped. Thus, we need only
time O(|Tv1 | + |Tv2 |) = O(|Tv|) for computing all Ivi

v with
vi ∈ Tv1 . After all tuples have been computed for vi ∈ Tv1

and vi ∈ Tv2 , the resulting sequences which are still sorted
have to be merged to get a sorted sequence for Tv. This can
be done in time O(|Tv|).

Now, we show how to construct the export tuples of Tv.

Claim 16. The sorted sequence of export tuples of Tv can
be computed in time O(|Tv|) if the sorted sequences of export
tuples of Tv1 and Tv2 are given.

Proof. We start with the export tuple for the place-
ment E∞

v , i.e., the export placement that is optimal for
D = ∞. Obviously, the number of outgoing requests of
the corresponding export tuple is 0, because otherwise the
term cost(E∞

v) + |RE∞v | · D would not be bounded. Since
|RE∞v | = 0 this placement can be viewed as an import place-

ment with request-quantity 0. The optimal cost, i.e., cost(I0
v),

for this placement can be computed due to Claim 15. Thus
we choose CE

v := cost(I0
v) for the cost of the tuple. The

optimality interval for this tuple will be computed later.
This was the optimal placement for very large distances D.

All other export placements have some outgoing requests,
because otherwise they are not different from E∞

v . Obviously,
in such a placement no requests enter the subtrees Tv1 and
Tv2 , because the placements are naturally assigned. There-
fore each outstanding export placement can be obtained by
combining two export placements of Tv1 and Tv2 . More for-
mally the export tuple for ED

v can be constructed from the

combination of the tuples for E
D−ct(e1)
v1 and E

D−ct(e2)
v2 .

In order to compute all required combinations in time
O(|Tv|) we first shift the optimality intervals of all export
tuples of Tv1 and Tv2 by −ct(e1) and −ct(e2), respectively.
Then the sequences of export tuples of Tv1 and Tv2 are tra-
versed in increasing order of their optimality intervals. If the
shifted optimality intervals of two export placements (one of
subtree Tv1 and the other of Tv2) intersect, the corresponding
tuples (C1, |R1|, I1) and (C2, |R2|, I2) are combined for a new
tuple (C, |R|, I) of Tv as follows. The optimality interval I is
simply the intersection of the shifted intervals I1 and I2. The
cost is given by C := C1 +C2 + |R1| ·ct(e1)+ |R2| ·ct(e2) and
the number of outgoing requests is |R| := |R1|+ |R2|+fr(v).

After this computation has finished there are at most |Tv|
tuples with |Rout| > 0 and the tuple corresponding to the
placement E∞

v . It remains to determine the lower bound
of the optimality interval for the last tuple, and to adjust
the other intervals, accordingly. This is done as follows. For
each tuple E = (CE , |RE |, IE) with |RE | > 0, we compute

the distance DE for which CE + DE · |RE | = cost(E∞
v). If

DE is smaller than the lower bound of IE the tuple E is
deleted because the corresponding placement is never optimal.
There exists exactly one tuple E∗ = (C∗

E ,R∗
E , I∗E) for which

D∗
E ∈ I∗ will hold. For this tuple the upper bound of the

optimality interval will be set to D∗
E . Further, the distance

D∗
E is the lower bound of the optimality interval for the tuple

corresponding to E∞
v .

Altogether, all these computations can be done in time
O(|Tv|) and give the sorted sequence of export tuples of
Tv.

Claims 15 and 16 yield the lemma.

Applying this lemma the relevant parameters of an optimal
placement OPT on a binary tree T can be computed in time
O(

P
v |Tv|) = O(|T | · diam(|T |)). This gives only the cost of

OPT. To compute the whole placement we use the fact that
for any tree Tv there is exactly one export tuple indicating
that v holds a copy and at most one import tuple with this
property. Thus, if we know which tuple from Tv is used to
compute the cost of OPT, we know whether v holds a copy
in OPT.

This is done as follows. For every tuple T we memorize
from which tuples T1 and T2 it has been constructed. This
can easily be realized by assigning two pointers to T pointing
to T1 and T2. Finally, every tuple used to compute the cost of
OPT can be reconstructed by following the pointers starting
at the tuple with optimal cost.

It is easy to see that an arbitrary tree T can be simulated
on a binary tree with O(|T |) nodes and diameter O(diam(T)·
log(deg(T))), which yields the overall running time of O(|T | ·
diam(T) · log(deg(T))) for the computation of an optimal
placement for T .

3.2 The general case
Now, we extend the results of the previous section to the
general case where nodes can issue read and write requests
to object x. A write request issued from node v increases
the total cost by

P
e∈EST

ct(e) where EST denotes the edge
set of the minimum Steiner-tree connecting v with all nodes
holding a copy of x. We define the write cost costW (P) of
a placement P on a subtree Tv as the cost caused by write
messages along edges in Tv. Thus, a write request issued at
node v increases costW (P) by

P
e∈EST∩ETv

ct(e).

Unfortunately, this definition of the write cost of a place-
ment on Tv depends on the placement of T \ Tv. More
precisely, it depends on whether a copy is placed in T \Tv or
not. Let cost1W (P) and cost0W (P) denote the write cost of P
under the condition that at least one or no copy is placed
in T \ Tv, respectively. These definitions are independent of
the placement in T \ Tv and either costW (P) = cost0W (P) or
costW (P) = cost1W (P) holds.

Now, we will show that there exists a sufficient set with
small cardinality for the new cost function. Adopting the
notations and definitions from the previous section we call a
set STv sufficient, if in each naturally assigned placement on
T the placement on Tv can be replaced by a placement in
STv without increasing the total cost. We define a sufficient
set STv as follows. Firstly, STv contains a placement

ED
v := arg min

placem. P
{cost(P) + cost1W (P) + |Rout

P | ·D} ,

for any D ∈ R+
0 . This is the optimal export placement for

distance D. Note that cost(P), as in the previous section,

www.manaraa.com

only denotes the cost for serving read requests and storing
objects. Secondly, STv contains the placement Ev in which
no node of Tv holds a copy.

Finally, for any R ∈ N, the set STv contains placements

IR
v := arg min

placem. P
{cost(P) + cost0W (P) + dP ·R} and

JR
v := arg min

placem. P
{cost(P) + cost1W (P) + dP ·R} .

These are the optimal import placements of request quantity
R. Note that for each request quantity R two import place-
ments are needed in order to ensure that STv is sufficient.
By similar techniques as used in Lemma 12 it can be shown
that STv has cardinality at most 3 · |Tv|+ 2.

Now, we prove that the set STv as defined above is indeed
sufficient. We are given a placement P for T together with
the corresponding subplacements PTv and PT\Tv for Tv and
T \ Tv, respectively. We have to replace the placement PTv

by one of the placements in STv without increasing the total
cost. The proof is relatively straightforward and consists of
a long enumeration of case distinctions. To shorten the proof
we restrict ourselves to a single case.

• Suppose that R requests issued in T \ Tv are served in
Tv and that a copy is placed in T \ Tv. The total cost
of the placement P is cost(PT\Tv) + cost1W (PT\Tv) +

cost(PTv) + cost1W (PTv) + dPTv
· R. Replacing PTv

with JR
v yields total cost cost(PT\Tv)+cost1W (PT\Tv)+

cost(JR
v)+ cost1W (JR

v)+ dJR
v
·R, which is not larger by

the definition of JR
v .

The algorithm for the general case works similar to the
algorithm in the previous section by simply computing the
relevant parameters for all placements in each set STv . Its
description is omitted since it gives no new algorithmic in-
sights.

4. REFERENCES
[1] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive

distributed file allocation. In Proceedings of the 25th
ACM Symposium on Theory of Computing (STOC),
pages 164–173, 1993.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed
paging for general networks. Journal of Algorithms,
28(1):67–104, 1998.

[3] I. D. Baev and R. Rajaraman. Approximation
algorithms for data placement in arbitrary networks. In
Proceedings of the 12th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 661–670, 2001.

[4] Y. Bartal, A. Fiat, and Y. Rabani. Competitive
algorithms for distributed data management. In
Proceedings of the 24th ACM Symposium on Theory of
Computing (STOC), pages 39–50, 1992.

[5] F. A. Chudak. Improved approximation algorithms for
uncapacitated facility location. In Proceedings of the
6th Integer Programming and Combinatorial
Optimization Conference (IPCO), pages 180–194, 1998.

[6] F. A. Chudak and D. B. Shmoys. Improved
approximation algorithms for a capacitated facility
location problem. In Proceedings of the 10th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 875–876, 1999.

[7] L. W. Dowdy and D. V. Foster. Comparative models of
the file assignment problem. ACM Computing Surveys,
14(2):287–313, 1982.

[8] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility location
problems. In Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
1–10, 1998.

[9] C. Lund, N. Reingold, J. Westbrook, and D. C. K. Yan.
On-line distributed data management. In Proceedings
of the 2nd European Symposium on Algorithms (ESA),
pages 202–214, 1994.

[10] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Exploiting locality for networks of
limited bandwidth. In Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 284–293, 1997.

[11] F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Provably good and practical strategies
for non-uniform data management in networks. In
Proceedings of the 7th European Symposium on
Algorithms (ESA), pages 89–100, 1999.

[12] F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Caching in networks. In Proceedings
of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 430–439, 2000.

[13] D. B. Shmoys, É. Tardos, and K. Aardal.
Approximation algorithms for facility location
problems. In Proceedings of the 29th ACM Symposium
on Theory of Computing (STOC), pages 265–274, 1997.

[14] E. Upfal and A. Wigderson. How to share memory in a
distributed system. Journal of the ACM, 34(1):116–127,
1987.

[15] O. Wolfson and A. Milo. The multicast policy and its
relationship to replicated data placement. ACM
Transactions on Data Base Systems, 16(1):181–205,
1991.

	Introduction
	The cost based model
	Previous and related work
	New results

	The approximation algorithm for arbitrary networks
	Proper placements
	The approximation algorithm

	The optimal algorithm for trees
	The read-only case
	The general case

	References

